-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Springer - Publisher Connector

Distrib Parallel Databases (2010) 28: 157-185
DOI 10.1007/s10619-010-7068-1

DYFRAM: dynamic fragmentation and replica
management in distributed database systems

Jon Olav Hauglid - Norvald H. Ryeng -
Kjetil Ngrvag

Published online: 8 September 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In distributed database systems, tables are frequently fragmented and repli-
cated over a number of sites in order to reduce network communication costs. How
to fragment, when to replicate and how to allocate the fragments to the sites are
challenging problems that has previously been solved either by static fragmentation,
replication and allocation, or based on a priori query analysis. Many emerging ap-
plications of distributed database systems generate very dynamic workloads with
frequent changes in access patterns from different sites. In such contexts, continu-
ous refragmentation and reallocation can significantly improve performance. In this
paper we present DYFRAM, a decentralized approach for dynamic table fragmenta-
tion and allocation in distributed database systems based on observation of the access
patterns of sites to tables. The approach performs fragmentation, replication, and re-
allocation based on recent access history, aiming at maximizing the number of local
accesses compared to accesses from remote sites. We show through simulations and
experiments on the DASCOSA distributed database system that the approach signif-
icantly reduces communication costs for typical access patterns, thus demonstrating
the feasibility of our approach.

Keywords Distributed DBMS - Fragmentation - Replication - Physical database
design

Communicated by Kam-Fai Wong.

Supported by grant #176894/V30 from the Norwegian Research Council.

J.0. Hauglid - N.H. Ryeng - K. Ngrvag (&)
Dept. of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
e-mail: noervaag @idi.ntnu.no

J.0. Hauglid
e-mail: joh@idi.ntnu.no

N.H. Ryeng
e-mail: ryeng @idi.ntnu.no

@ Springer

https://core.ac.uk/display/81056700?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:noervaag@idi.ntnu.no
mailto:joh@idi.ntnu.no
mailto:ryeng@idi.ntnu.no

158 Distrib Parallel Databases (2010) 28: 157-185

1 Introduction

There is an emerging need for efficient support of databases consisting of very large
amounts of data that are created and used by applications at different physical loca-
tions. Examples of application areas include telecom databases, scientific databases
on grids, distributed data warehouses, and large distributed enterprise databases. In
many of these application areas the delay from accessing a remote database is still
significant enough to make necessary the use of distributed databases employing frag-
mentation and replication, a fact also evident recently by increased support for distrib-
uted fragmented and replicated tables in commercial products like MySQL Cluster.

In distributed databases, the communication costs can be reduced by partitioning
database tables horizontally into fragments, and allocating these fragments to the sites
where they are most frequently accessed. The aim is to make most data accesses lo-
cal, and avoid remote reads and writes. The read cost can be further reduced by the
replication of fragments when beneficial. Obviously, important challenges in frag-
mentation and replication are how to fragment, when to replicate fragments, and how
to allocate the (replicated) fragments.

Previous work on data allocation has focused on (mostly static) fragmentation
based on analyzing queries. These techniques are only useful in contexts where read
queries dominate and where decisions can be made based on SQL-statement analy-
sis. Moreover, they also involve centralized computations based on collected statis-
tics from participating sites. However, in many application areas, workloads are very
dynamic with frequent changes in access patterns at different sites. One common
reason for this is that their data usage often consists of two separate phases: a first
phase where writing of data dominates (for instance during simulation when results
are written), and a subsequent second phase when a subset of the data, for example re-
sults, is mostly read. The dynamism of the overall access pattern is further increased
by different instances of the applications executing in different phases at different
sites.

Because of dynamic workloads, static/manual fragmentation and replication may
not always be optimal. Instead, the fragment and replication management should be
dynamic and completely automatic, i.e., changing access patterns should result in re-
fragmentation and reallocation of fragments when beneficial, as well as in the creation
or removal of fragment replicas. In this paper, we present DYFRAM, a decentralized
approach for dynamic fragmentation and replica management in distributed database
systems, based on observation of access patterns of sites to tables. Fragmentation and
replication is performed based on recent access history, aiming at maximizing the
number of local accesses compared to accesses from remote sites.

An example of what we aim at achieving with our approach is illustrated in Fig. 1.
It illustrates the access pattern of a database table from two sites. Site 1 has a uniform
distribution of accesses, while site 2 has an access pattern with distinct hot spots. In
this case, a good fragmentation would generate 6 fragments, one for each of the hot
spot areas and one for each of the intermediate areas. A good allocation would be the
fragments of the hot spot areas (F1, F3, and Fs) allocated to site 2, with the other
fragments (F5, Fu,-and _Fg).allocated to.site 1. As will be shown later in the experi-
mental evaluation, DYFRAM will detect this pattern, split the table into appropriate

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 159

Access frequency

Fragmentation attribute value

i

Optimal fragmentation

Fig. 1 Example access pattern, and desired fragmentation and allocation

fragments, and then allocate these fragments to the appropriate sites. Whether some
of the fragments should be replicated or not depends on the read/write pattern. Note
that if the access pattern changes later, this will be detected and fragments reallocated
as well as repartitioned if necessary.

The main contributions of this paper are (1) a low-cost algorithm for fragmentation
decisions, making it possible to perform refragmentation based on the recent work-
load, and (2) dynamic reallocation and replication of fragments in order to minimize
total access cost in the system. The process is performed in a completely decentral-
ized manner, i.e., without a particular controlling or coordinating site. An important
aspect of our approach is the combination of the dynamic refragmentation, realloca-
tion, and replication into a unified process. To the best of our knowledge, no previous
work exists that perform this task dynamically during query execution based on both
reads and writes in a distributed setting. Our approach is also applicable in a parallel
system, since one of our important contributions compared to previous work is that
the decisions can be taken without communication of statistics or synchronization
between sites.

The organization of the rest of this paper is as follows. In Sect. 2 we give an
overview of related work. In Sect. 3 we outline our system and fragment model and
state the problem tackled in this work. In Sect. 4 we give an overview of DYFRAM.
In Sect. 5 we describe how to manage replica access statistics. In Sect. 6 we describe
in detail the dynamic fragmentation and replication algorithm. In Sect. 7 we evaluate

e i in Sect. 8, we conclude the paper and outline

@ Springer

160 Distrib Parallel Databases (2010) 28: 157-185

2 Related work

The problem of fragmenting tables so that data is accessed locally has been studied
before. It is also related to some of the research in distributed file systems (see a
summary in [14]). One important difference between distributed file systems and dis-
tributed database systems is the typical granularity of data under consideration (files
vs. tuples) and the need for a fragmentation attribute that can be used for partitioning
in distributed database systems.

Fragmentation is tightly coupled with fragment allocation. There are methods that
do only fragmentation [1, 24, 26, 33, 34] and methods that do only allocation of pre-
defined fragments [3, 4, 7, 10, 13, 20, 30]. Some methods also exist that integrate
both tasks [9, 11, 17, 19, 25, 27, 29]. Replication, however, is typically done as a
separate task [5, 8, 15, 21, 22, 32], although some methods, like ours, take an integral
view of fragmentation, allocation and replication [11, 27, 29]. Dynamic replication
algorithms [5, 15, 21, 22, 32] can optimize for different measures, but we believe that
refragmentation and reallocation must be considered as alternatives to replication.
In DYFRAM we choose among all these options when optimizing for communica-
tion costs. Our replication scheme is somewhat similar to that of DIBAS [11], but
DYFRAM also allows remote reads and writes to the master replica, whereas DIBAS
always uses replication for reads and do not allow remote writes to the master replica.
This operation shipping is important when analyses [8] of replication vs. remote reads
and writes conclude that the replication costs in some cases may be higher than the
gain from local data access. A key difference between DIBAS and DYFRAM is that
DIBAS is a static method where replication is based on offline analysis of database
accesses, while DYFRAM is dynamic and does replication online as the workload
changes.

Another important categorization of fragmentation, allocation and replication
methods is whether they are static or dynamic. Static methods analyze and opti-
mize for an expected database workload. This workload is typically a set of database
queries gathered from the live system, but it could also include inserts and updates.
Some methods also use more particular information on the data in addition to the
query set [26]. This information has to be provided by the user, and is not available in
a fully automated system. A form of static method is the design advisor [34] which
suggests possible actions to a database administrator. The static methods are used at
major database reconfigurations. Some approaches, such as evolutionary algorithms
for fragment allocation [3, 10], lend themselves easily to the static setting.

Static methods look at a set of queries or operations. It can be argued that the work-
load should be viewed as a sequence of operations, not as a set [2]. Dynamic methods
continuously monitor the database and adapt to the workload as it is at the moment
and are thus viewing a sequence of operations. Dynamic methods are part of the trend
towards fully automatic tuning [31], which has become a popular research direction.
Recently, work has appeared aiming at integrating vertical and physical partitioning
while also taking other physical design features like indices and materialized views
into consideration [1]. Adaptive indexing [2, 6] aims to create indices dynamically
when the costs.can be amortized over.a long sequence of read operations, and to drop
them if there is a long sequence of write operations that would suffer from having to

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 161

update both base tables and indices. Our work is on tables and table fragments, but
shares the idea of amortizing costs over the expected sequence of operations. In adap-
tive data placement, the focus has either been on load balancing by data balancing [9,
17], or on query analysis [19]. In our algorithms, we seek to place data on the sites
where they are being used (by reads or writes), not to balance the load.

Using our method, fragments are automatically split, coalesced, reallocated and
replicated to fit the current workload using fragment access statistics as a basis for
fragment adjustment decisions. When the workload changes, our method adjusts
quickly to the new situation, without waiting for human intervention or major re-
configuration moments. Closest to our approach may be the work of Brunstrom et
al. [7], which studied dynamic data allocation in a system with changing workloads.
Their approach is based on pre-defined fragments that are periodically considered for
reallocation based on the number of accesses to each fragment. In our work, there are
no pre-defined fragments. In addition to reallocating, fragments can be split and coa-
lesced on the fly. Our system constantly monitors access statistics to quickly respond
to emerging trends and patterns.

A third aspect is how the methods deal with distribution. The method can either
be centralized, which means that a central site gathers information and decides on
the fragmentation, allocation or replication, or it can be decentralized, delegating the
decisions to each site. Some methods use a weak form of decentralization where sites
are organized in groups, and each group chooses a coordinator site that is charged
with making decisions for the whole group [15, 21].

Among the decentralized systems, we find replication schemes for mobile ad hoc
networks (see [23] for an overview). However, these approaches do not consider table
fragmentation and in general do replication decisions on a more coarse granularity,
e.g., files.

In DYFRAM, fragmentation, allocation and replication decisions are fully decen-
tralized. Each site decides over its own fragments, and decisions are made on the fly
based on current operations and recent history of local reads and writes. Contrary
to much of the work on parallel database systems, our approach has each site as an
entry point for operations. This means that no single site has the full overview of the
workload. Instead of connecting to the query processor and reading the WHERE-part
of queries, we rely on local access statistics.

Mariposa [27, 28] is a notable exception to the traditional, manually fragmented
systems. It provides refragmentation, reallocation and replication based on a bidding
protocol. The difference from our work is chiefly in the decision-making process.
A Mariposa site will sell its data to the highest bidder in a bidding process where
sites may buy data to execute queries locally or pay less to access it remotely with
larger access times, optimizing for queries that have the budget to buy the most data.
A DYFRAM site will split off, reallocate or replicate a fragment if it optimizes access
to this fragment, seen from the fragment’s viewpoint. This is performed also during
query execution, not only as part of query planning, as is the case in Mariposa.

A summary and feature comparison of our method and related fragmentation, al-
location and replication methods is given in Table 1. We show which features are
provided. by each method and whether it is a dynamic method that adapts to the
workload or a static method that never updates its decision. The methods are also

@ Springer

162

Distrib Parallel Databases (2010) 28: 157-185

Table 1 Summary of related fragmentation, allocation and replication methods

g = = -":)
g2 02 & & 8 &
DYFRAM v v v v v
Agrawal et al. [1] v v v
Ahmad et al. [3] v Vv v
Apers [4] Vv Ve Ve
Bonvin et al. [5] v v v
Brunstrom et al. [7] v v v
Ciciani et al. [8] v v v
Copeland et al. [9] v v v v
Corcoran and Hale [10] v v v
Didriksen and Galindo-Legaria [11] v v v v v
Furtado [13] v v v
Hara and Madria [15] Vv v v
Hua and Lee [17] Vv v v v
Ivanova et al. [19] v v v v
Menon [20] Vv va va
Mondal et al. [21] Vv v v
Mondal et al. [22] v v v
Rao et al. [24] v Vv v
Sacca and Wiederhold [25] Vv Vv va v
Shin and Irani [26] v Vs v
Sidell et al. [27] v v v v v
Tamhankar and Ram [29] Vv Vv N Ve Vv
Ulus and Uysal [30] v v v
Wolfson and Jajodia [32] v v v
Wong and Katz [33] v v v
Zilio et al. [34] v v v

categorized according to the where the decisions to fragment, allocate and replicate
are made. This can be done either centralized to a single site which has the necessary
information about the other sites, or decentralized.

3 Preliminaries

he rest of the paper. We introduce symbols
shown in Table 2.

Distrib Parallel Databases (2010) 28: 157-185 163

Table 2 Symbols

Symbol Description

S; Site

ti Tuple

T Table T

F; Fragment i of table T’
R; Replica i

R™ Master replica
Fi[min, max] Fragment value domain
F Fragmentation

C Cost

A Tuple access

RE; Refragmentation

3.1 System model

The system is assumed to consist of a number of sites S;,i = 1...n, and we assume
that sites have equal computing capabilities and communication capacities. Each site
runs a DBMS, and a site can access local data and take part in the execution of
distributed queries, i.e., the local DBMSs together constitute a distributed database
system. The distribution aspects can be supported directly by the local DBMS or can
be provided through middleware.

Metadata management, including information on fragmentation and where repli-
cas are stored, is performed through a common catalog service. This catalog service
can be realized in a number of ways, for example in our prototype system we use a
distributed hash table where all sites participate [16].

Our approach assumes that data can be represented in the (object-)relational data
model, i.e., tuples #; being part of a table T'. A table can be stored in its entirety on
one site, or it can be horizontally fragmented over a number of sites. Fragment i of
table T is denoted F;.

In order to improve performance as well as availability, fragments can be repli-
cated, i.e., a fragment can be stored on more than one site. We require that replication
is master-copy based, i.e., all updates to a fragment are performed to the master-copy,
and afterward propagated to the replicas. If a master replica gets refragmented, other
replicas must be notified so they can be refragmented as well.

3.2 Fragment model

Fragmentation is based on one attribute value having a domain D, and each frag-
ment covering an interval of the domain of the attribute, which we call fragment
value domain (FVD). We denote the fragment value domain for a fragment F; as
FVD(F;) = F;[min;, max;]. Note that the FVD does not imply anything about what
values that actually exist in a fragment. It only states that if there is a tuple in the
global table with value v_in_the fragmentation attribute, then this tuple will be in
the fragment with the £VD that covers v. We define two fragments F; and F; to be

@ Springer

164 Distrib Parallel Databases (2010) 28: 157-185

adjacent if their FVD meets, i.e.:
adj(F;, Fj) = max; = min; V max; = min;

When a table is first created, it consists of one fragment covering the whole domain
of the fragmentation attribute value, i.e., Fo[Din, Dmax], or the table consists of a
number of fragments Fi, ..., F, where | J!_, FVD(F;) = [Dyin, Dpax]. A fragment
F,1q can subsequently be split into two or more fragments F1, ..., F,. In this case,
the following holds true:

n
U Fi = Fou
i=1

VF,',FJ'G{Fl,...,Fn}Fi#FJ‘:}F}ﬁFj=@

In other words, the new fragments together cover the same FVD as the original frag-
ment, and they are non-overlapping. Two or more adjacent fragments Fi, ..., F;, can
also be coalesced into a new fragment if the new fragment covers the same FVD as
the previous fragments covered together:

n
FneWZUFi
i=1

VE €(Fi,..., F,), 3(Fj €(Fi,..., F,)) : adj(F;, F})

Consider a distributed database system consisting of a number of sites S;,i =
1...n and a global table T'. At any time the table 7 has a certain fragmentation, e.g.,
F ={So(Fo, F3), S3(F1, F»)}. Note that not all sites have been allocated fragments,
and that there might be replicas of fragments created based on the read pattern. In
this case, we distinguish between the master replica R™ where the updates will be
applied, and the read replicas R;. Using a master-copy protocol the read replicas R}
will receive updates after they have been applied to the master replica R™.

3.3 Problem definition

During operation, tuples are accessed as part of read or write operations A. If the
fragment where a tuple belongs (based on the value of the fragmentation attribute)
is stored on the same site as the site S, performing the read access Ag, it is a local
read access and the cost is C(Ag) = Cr. On the other hand, if the fragment is stored
on a remote site, a remote read access has to be performed, which has a cost of
C(AR) =Cg.

In the case of a write access, the cost also depends on whether the fragment to
which the tuple belongs is replicated or not. The basic write cost of a tuple belonging
to a master replica that is stored on the same site as the site S, performing the write
access is C(Aw) = Cpr. If the master replica is stored on a remote site, a remote
write access has to be performed, which has a cost of C(Aw) = Cw. In addition,
if the fragment is.replicated, the write will incur updates to the read replicas, i.e.,
C(Ay) = rCy where r is the number of read replicas.

@ Springer

Distrib Parallel Databases (2010) 28: 157-185

165

Site 0 Site 1
Local Remote | A
accesses accesses
Site 2
Local DB :
access Local DB) Site 3
statistics
I —
A 4
Fragment_atlon Create/delete
and replica replica? | | m—
management Split fragment? Site n
algorithms Ly

Fig. 2 Dynamic fragmentation and allocation

In this paper we focus on reducing the communication costs, and therefore assume
that Cz = 0. Note, however, that it is trivial to extend our approach by including local
processing cost.

If we consider the accesses in the system as a sequence of n operations at discrete
time instants, the result is a sequence of accesses [A¢, ..., A,]. The total access cost
is) °; C(A;). The access cost of a tuple at a particular time instant depends on the
fragmentation F.

Refragmentation and reallocation of replicas of fragments can be performed at
any time. Given a computationally cheap algorithm for determining fragmentation
and allocation, the main cost of refragmentation and reallocation is the migration or
copying of fragments from one site to another. We denote the cost of one refrag-
mentation or reallocation as C(RE) (this includes any regeneration of indices after
migration), and the cost of all refragmentations and reallocations as »_ jC(RE)).

The combined cost of access, refragmentations and reallocations is thus Ciyy =
> CAD+Y j C(RE;). Note that the access, refragmentation and reallocation op-
erations are interleaved. The aim of our approach is to minimize the cost C;yyy;-

4 Overview of DYFRAM

This section describes our approach to dynamically fragment tables, and replicate
those fragments on different sites in order to improve locality of table accesses and
thus reduce communication costs. Our approach has two main components: (1) de-
tecting replica access patterns, and based on these statistics to (2) decide on refrag-
mentation and reallocation. The approach is illustrated in Fig. 2.

Each site makes decisions to split, migrate and/or replicate independently of other
sites.. This.makes.it possible.to.use our.approach without communication overhead,
changing the network protocol or even using it on all sites in the system.

@ Springer

166 Distrib Parallel Databases (2010) 28: 157-185

In order to make informed decisions about useful fragmentation and replica
changes, future accesses have to be predicted. As with most online algorithms, pre-
dicting the future is based on knowledge of the past. In our approach, this means
detecting replica access patterns, i.e., which sites are accessing which parts of which
replica. This is performed by recording replica accesses in order to discover access
patterns. Recording of accesses is performed continuously. Old data is periodically
discarded so that statistics only include recent accesses. In this way, the system can
adapt to changes in access patterns. Statistics are stored using histograms, as de-
scribed in Sect. 5.

Given the available statistics, our algorithm examines accesses for each replica
and evaluates possible refragmentations and reallocations based on recent history.
The algorithm runs at given intervals, individually for each replica. Since decisions
are made independently of other sites, decisions are made based on the information
available at that site. With master-copy based replication, all writes are made to the
master replica before read replicas are updated. Therefore, write statistics are avail-
able at all sites with a replica of a given fragment. On the other hand, reads are only
logged at the site where the accessed replica is located. This means that read statistics
are spread throughout the system. In order to detect if a specific site has a read pattern
that indicates that it should be given a replica, we require a site to read from a specific
replica so that this site’s read pattern is not distributed among several replicas.

With all sites with replicas of a given fragment acting independently, we have to
make sure that decisions taken are not in conflict with each other. To achieve this,
we handle the master replica and read replicas differently. The site with the master
replica can: (1) split the fragment, (2) transfer the master status to a different replica,
and (3) create a new replica. Sites with read replicas can: (1) create a new replica,
and (2) delete its own replica.

These decisions are made by the algorithm by using cost functions that estimate
the difference in future communication costs between a given replica change and
keeping it as is. Details are presented in Sect. 6.

Regarding data consistency and concurrency control, this can be treated as in ex-
isting systems employing fragmentation and replication and is therefore not outlined
here. In our DASCOSA-DB distributed database system [16], locking in combination
with the system catalog (DHT-based) is used, however more complex protocols can
also be used in order to increase concurrency (this is not specific to DYFRAM).

5 Replica access statistics

Recording of replica accesses is performed at the tuple level. The access data consists
of (S, v, a) tuples, where S is the site from which the operation came, v is the value
of the fragmentation attribute and a is the access type (read or write). In cases where
recording every access can be costly (the overhead is discussed later), it is possible to
instead record a sample of accesses—trading accuracy for reduced overhead.

The data structure used to store access statistics is of great importance to our ap-
proach. It should have the following properties:

— Must hold enough information to capture read and write patterns.

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 167

— Efficient handling of updates as they will be frequent.

Memory efficient—storage requirements should not depend on fragment size or

number of accesses.

Must be able to handle any v values, because it will not be known beforehand

which ranges are actually used.

— Must be able to effortlessly remove old access history in order to only keep recent
history.

Since our purpose for recording accesses is to detect access patterns in order to
support fragmentation decisions, we are interested in knowing how much any given
site has accessed different parts of the fragment. We store access statistics in his-
tograms. Every site has a set of histograms for each fragment it has a local replica
of. These histograms must be small enough to be kept in main memory for efficient
processing.

In the following, we present the design of our access statistics histograms as well
as algorithms for the different histogram operations.

5.1 Histogram design

Histograms have been used for a long time to approximate data distribution in data-
bases [18]. Most of these have been static histograms constructed once and then left
unchanged. In our case, data to be represented by the histograms arrive continuously.
Static histograms would therefore soon be out of date and constant construction of
new histograms would have prohibitive cost.

Another class of histograms is dynamic histograms [12, 18], that are maintained
incrementally and therefore better suited for our approach. Most histograms de-
scribed in the literature are equi-depth histograms, since these capture distributions
better than equi-width histograms for the same number of buckets [18].

For our approach we chose to use equi-width histograms. This choice was made
in order to improve the performance of histogram operations, since equi-width his-
tograms are by design simpler to use and to access than equi-depth histograms. This
is because all buckets have the same width, and finding the correct bucket for a given
value is therefore a very simple computation. As will become apparent when we de-
scribe histogram updates and retrievals in detail below, it also simplifies computing
histogram range counts when we use two different histogram sets in order to store
only the recent history. The obvious disadvantage of using equi-width histograms is
that we have to use more buckets in order to capture access patterns with the same
accuracy as equi-depth histograms. However, the significantly reduced computational
cost makes this an acceptable trade-off.

Histogram-related symbols used in the following discussion are summarized in
Table 3. Each bucket in a histogram H; has a bucket number b and contains two val-
ues: the read count R;[by] and the write count W;[b]. We use equi-width histograms
with bucket width W and limit bucket value ranges to start and end on multiples
of W. The value range of a bucket is then [by - W, (b + 1) - W).

Histograms. only maintain statistics for.values that are actually accessed, i.e., they
do not cover the whole FVD. This saves space by not storing empty buckets, which

@ Springer

168 Distrib Parallel Databases (2010) 28: 157-185

Table 3 Histogram symbols

Symbol Description

H; Histogram

by, Histogram bucket number

R;[bg] Number of reads in bucket

Wi lbi] Number of writes in bucket

w Bucket width

MAX g Maximum number of buckets

Zw Factor used when resizing buckets

is useful since we lack a priori knowledge about fragment attribute values. Buckets
are therefore stored as (by, R;[bx], W;[bi]) triplets hashed on by for fast access.

In order to limit memory usage, there is a maximum number of stored buckets,
MAX . If a histogram update brings the number of stored buckets above MAX g, the
bucket width is scaled up by a factor Zw . Similarly, bucket width is decreased by
the same factor if it can be done without resulting in more than MAX p buckets. This
makes sure we have as many buckets as possible given memory limitations, as this
better captures the replica access history.

In order to store only the most recent history, we use two sets of histograms: the
old and the current set. All operations are recorded in the current set. Every time
the evaluation algorithms have been run, the old set is cleared and the sets swapped.
This means that the current set holds operations recorded since the last time the al-
gorithm was run, while the old set holds operations recorded between the two last
runs. For calculations, the algorithms uses both sets. This is made simple by the fact
that we always use the same bucket width for both sets and that bucket value range
is a function of bucket number and width. Adding histograms is therefore performed
by adding corresponding bucket values. We denote the current histogram storing ac-
cesses from site S; to replica R; of fragment F; as H.,[S;, R;], while the old his-
togram is Hyjq[S;, R;].

5.2 Histogram operations
This section presents algorithms for the different histogram operations.
5.2.1 Histogram update

Every time a tuple in one of the local replicas is accessed, the corresponding his-
togram is updated. This is described in Algorithm 1. Although not included in the
algorithms (to improve clarity), we normalize values before they are entered into the
histogram. Assume a replica R; of fragment F; with FVD(F;) = F;[min;, max;] and
a tuple #; with fragmentation attribute value v;. We then record the value v; — min;.
This means that histogram bucket numbers start at O regardless of the FVD.

Since this operation is performed very often, it is important that it is efficient. As
described.above, the value range. of bucket number by is [by - W, (by + 1) - W). We
therefore need to determine by for a given fragmentation attribute value v; and then

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 169

Algorithm 1 Site S; reads tuple ¢; in replica R; with fragmentation attribute value
v;. (Similar for writes.)

histogramUpdate(S;, R;, v}):
Hi <~ chr[Sia Rj]
by <~ vj/ w
Ri[br] < Rilbe] + 1
if numberOfBuckets > MAX p then
increaseBucketWidth(R ;)
end if

increment its bucket value. The formula is by = v;/ W, which means that the com-
putational cost is O(1). Also, since histograms are kept in main memory, histogram
updates do not incur any disk accesses.

If no bucket already exists for bucket number by, a new bucket must be con-
structed. This is the only time where the histogram gets more buckets, so after the
update, the current number of buckets is checked against the upper bound MAX p and
bucket width is increased (and thus the number of buckets decreased) if we now have
too many buckets.

5.2.2 Histogram bucket resizing

If at any time a tuple access occurs outside the range covered by the current buckets,
a new bucket is made. If the upper bound of buckets, MAX p, is reached, the bucket
width W is increased and the histograms reorganized. We do this by multiplying
W with a scaling factor Zy . This factor is an integer such that the contents of new
buckets are the sum of a number of old buckets. Increasing bucket width of course
reduces the histogram accuracy, but it helps reduce both memory usage and process-
ing overhead. Since we only store recent history, we may reach a point where the
set of buckets in use becomes very small. If we can reduce bucket width to W/Zy
and still have fewer buckets than the upper bound, the histogram is reorganized by
splitting each bucket into Zy new buckets. This reorganization assumes uniform dis-
tribution of values inside each bucket, which is a common assumption [18]. Details
are shown in Algorithm 2. Note that this is performed for both the current and old
set of histograms in order to make them have the same bucket width, as this makes
subsequent histogram accesses efficient. The function gerActiveSites(R) returns the
set of all sites that have accessed replica R.

Similarly, if we at any point use only a very low number of buckets, the bucket
widths can be decreased in order to make access statistics more accurate. This is
described in Algorithm 3. Of special note is the expression max(1, R;[br]/Zw). If a
large bucket to be divided into smaller buckets contain only a few tuples, rounding can
make R;[br]/Zw = 0, which would in effect remove the bucket (since only buckets
containing tuples are stored). To prevent loss of information in this case, new buckets
contain a minimum of 1 tuple.

@ Springer

170 Distrib Parallel Databases (2010) 28: 157-185

Algorithm 2 Increase bucket width W for histograms for replica R by factor Zyy .
increaseBucketWidth(R):

for all S; € getActiveSites(R) do
for all H; € H.,,,[S;, R1U H,;4[S;, R] do
Hl <0
for all by € H; do
b,/C =by/Zw
R![b;]1= R/[b}] + Ri[bz]
W/[b}1 = W][b}] + W;lbi]
end for
Hi <~ Hi/
end for
end for

5.2.3 Histogram range count

When retrieving access statistics from histograms, i.e., contents of buckets within
a range, both current and old histograms are used. Since both histograms have the
same bucket width and corresponding bucket numbers, retrieval is a straight summa-
tion of range counts from the two histograms and therefore very fast to perform. In
order to count number of reads or writes from site S to replica R stored in buckets
numbered [bin, bmax], the functions histogramReadCount (S, R, byin, bimay) and his-
togramWriteCount(S, R, byin, bmay) are used. In order to get the sum of range counts
for writes from all sites, the function histogramWrite CountAll(R, byin, binax) 18 used.

5.2.4 Histogram reorganization

As stated earlier, it is important that only the recent access history is used for replica
evaluations in order to make it possible to adapt to changes in access patterns. This is
achieved by having two sets of histograms, one current histogram H,,, that is main-
tained and one H,;; which contains statistics from the previous period. Periodically
the current H,; is replaced with the current contents of H,,,, and then H,,, is emp-
tied and subsequently used for new statistics.

The only time buckets are removed from the histogram is during reorganiza-
tion. It is therefore the only time that the number of buckets in the histogram can
get so low that we can decrease the bucket width (thus creating more buckets) and
still stay below the bucket number maximum MAX g. This will be performed using
decreaseBucketWidth(R) described in Algorithm 3. The function performing the re-
organization is in the following denoted histogramReorganize(R).

5.3 Histogram memory requirements
wrong, remainders from old version It is important that the size of the histograms is
small so.that enough main memory.is.available for more efficient query processing

and buffering. For every replica a site has, it must store two histograms for each

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 171

Algorithm 3 Decrease bucket width W for histograms for replica R by factor Zy .
decreaseBucketWidth(R):

for all S; € getActiveSites(R) do
for all H; € H.,,,[S;, R1U H,;4[S;, R] do
Hl <0
for all by € H; do
for b, =0to Zy do
Rl[bi - Zw + bj,] = max(1, Rilbi)/Zw)
W/lbi - Zw + b1 = max(1, W;lbel/ Zw)
end for
end for
Hi < Hi/
end for
end for

active site accessing the fragment. Every bucket is stored as a (bk, R;[bx], W;[bi])
triplet (note that sparse histograms are used, so that only buckets actually accessed
are stored). Assuming b buckets and c active sites, the memory requirement for each
replicais 2 - ¢ - b - sizeOf (bucket) or O(b - ¢). Since b have an upper bound MAX g,
memory consumption does not depend on fragment size or number of accesses, only
on the number of active sites.

6 Fragmentation and replication

Our approach calls for three different algorithms. One for creating new replicas, one
for deleting replicas and one for splitting and coalescing fragments. These will be
described in the following sections.

These algorithms are designed to work together to dynamically manage fragmen-
tation and replication of those fragments such that the overall communication costs
are minimized. The communication cost consists of four parts: (1) remote writes,
(2) remote reads, (3) updates of read replicas, and (4) migration of replicas (either in
itself or as part of creation of a new replica).

Common for all three algorithms is that they seek to estimate the benefit from a
given action based on available usage statistics. This is implemented using three cost
functions, one for each algorithm. These functions are described in Sect. 6.4.

6.1 Creating replicas

This algorithm is run at regular intervals for each fragment of which a given site has
a replica. The aim is to identify sites that, based on recent usage statistics, should be
assigned a replica. If any such sites are found, replicas are sent to them, and the site
holding the master replica is notified so that the new replicas can receive updates.
The algorithm for identifying and creating new replicas of replica R is shown in
Algorithm 4. In the algorithm, a cost function (to be described in Sect. 6.4) is applied

@ Springer

172 Distrib Parallel Databases (2010) 28: 157-185

Algorithm 4 Evaluate replica R for any possible new replicas. R is located on site S;.

createReplica(R):
bin < min(H,,[S;, R]) {First bucket used}
byax < max(H., [S;, R]) {Last bucket used}
cardy, < histogramWriteCountAll(R, byin, bimax)
for all S, € getActiveSites(R) do
card,r < histogramReadCount(S,, R, bumin, bmax)
utility < wpg - card,r — card,, — wgs - card(R)
if utility > O then
copyReplica(R, S,) {Also notifies master replica}
end if
end for

Algorithm 5 Evaluate local replica R and decide if it should be deleted. R is located
on site Sj.
deleteReplica(R):
byin < min(Hy,[S;, R]) {First bucket used}
bmax < max(H.,-[S;, R]) {Last bucket used}
cardy, < histogramWriteCountAll(R, byin, bimax)
cardjr < histogramReadCount(S;, R, byin, bmax)
utility <— wpg - card,, — cardr
if utility > 0 then
deleteLocalReplica(R) {Also notifies master replica}
end if

for each remote site S, that has read from to R. The result is a utility value that
estimates the communication cost reduction achieved by creating a new replica at
site S,. All sites with positive utility value receive a replica. If no site has a positive
utility, no change is made.

Note that, if desired, the number of replicas in the system can be constrained by
having a limit on the number of replicas. This might be beneficial in the context of
massive read access to various sites.

6.2 Deleting replicas

Since each fragment must have a master replica, only read replicas are considered
for deletion. This algorithm evaluates all read replicas a given site has, in order to
detect if the overall communication cost of the system would be lower if the replica
were deleted. The details are shown in Algorithm 5. Again, a cost function is used to
evaluate each read replica_R. Any replica with a positive utility is deleted after the
site with the master replica has been notified.

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 173

6.3 Splitting fragments

The aim of the fragmentation algorithm is to identify parts of a table fragment that,
based on recent history, should be extracted to form a new fragment and migrated to
a different site in order to reduce communication costs (denoted extract+migrate). To
avoid different fragmentation decisions made simultaneously at sites with replicas of
the same fragment, this algorithm is only applied to master replicas.

More formally, assume a fragmentation F,;; which includes a fragment F; with
FVD(F;) = F;[min;, max;] having master replica le allocated to site S;. Find a
set of fragments F,, ..., F, such that | J Fp, ..., F, = F; with Fyey € Fy, ..., Fy
and master replica R}, allocated to site Sy 7 S; such that the communication cost
Croal = Y_C(A;) + Y C(RE)) is lower than for F, .

The result of each execution can be either: (1) do nothing, i.e., the fragment is
as it should be, (2) migrate the whole master replica, or (3) extract a new fragment
Frew with FVD(Fyeyw) = Fuewl[mingey, max,e,] and migrate its new master replica
to site Sx. A decision to migrate the whole master replica can be seen as a special
case of extract+migrate. In the discussion below, we therefore focus on how to find
appropriate values for min,e,, and max,,,,. If a refragmentation decision is made, all
sites with read replicas are notified so that they can perform the same refragmentation.
This is necessary to enforce that all replicas of a given fragment are equal.

The algorithm for evaluating and refragmenting a given fragment F is presented
in Algorithm 6. It evaluates all new possible fragments Fj,,, and possible recipient
sites S, using a cost function. The result is a utility value that estimates the commu-
nication cost reduction from extracting F, and migrating its master replica to S;.
Afterward, all compatible fragmentations with positive utility values are performed.
Two fragmentations are compatible if their extracted fragments do not overlap. In
case of two incompatible fragmentations, the fragmentation with the highest utility
value is chosen. Note that no fragments with FVD less than fragmentMinSize will be
extracted in order to prevent refragmentation from resulting in an excessive number
of fragments.

Given a fragment F; with FVD(F;) = F;[min;, max;], the size of the fragment
value domain is then width = max; — min; + 1. Assume an extraction of a new frag-
ment F,,,, such that FVD(F,,) = Fyew[ming,e,,, maxyey] € FVD(F;). If FVD(F,.,)
is assumed to be non-empty, i.e., Max,ey > Minye,, then width — 1 possible values
for minye,, and max,e,, are possible. This means that O(widthz) possible fragments
Fpew will have to be evaluated. This could easily lead to a prohibitively large number
of Fe, to consider, so some heuristic is required.

We reduce the number of possible fragments to consider based on the follow-
ing observation: The basis for the evaluation algorithm is the access histograms de-
scribed above. These histograms represent an approximation since details are limited
to the histogram buckets. It is therefore only meaningful to consider FVD(Fj,,,) with
start/end-points at histogram bucket boundaries.

With b histogram buckets and b <« width as well as b having an upper bound,
processing becomes feasible. The number of value ranges to consideris b(b+1)/2 =
0.(b*)..An example of a histogram with four buckets and 10 possible FVD(F,,,) is
shown in Fig. 3.

@ Springer

174 Distrib Parallel Databases (2010) 28: 157-185

Algorithm 6 Evaluate fragment F for any possible extract+migrates. R™ is the mas-
ter replica of F and is currently located on site S;.
refragment(F, R™):
fragmentations < ()
for all S, € getActiveSites(R™) do
for all bumin € Heyr[Sy, Rm]» bmax € Hewr[Sr, Rm] do
cardy, < histogramWriteCount(Sy, R™, byin, bimax)
cardyy, < histogramWriteCount(S;, R™, biin, bimax)
utility <— wpg - cardyy, — cardyy, — wrs - card(F)
if utility > 0 and (max — min + 1) > fragmentMinSize then
fragmentations < fragmentations U (S,, min, max, utility)
end if
end for
end for
sort(fragmentations) {Sort on utility value}
removelncompatible(fragmentations)
for all (S,, min, max, utility) € fragmentations do
F1, Fuew, F» < extractNewFragment(F, min, max)
migrateFragment(Fpe,, Sy) {Migrates master replica}
updateReplicas()
end for
coalesceLocalFragments()
histogramReorganize(R™)

Fig. 3 Histogram with four

buckets and corresponding value .
istogram T
ranges buckets | Bxu | Bua | Bua | Bus
—
(—)E s
Possible —
>
value T
—F
ranges ¢« ~ %
2

After the algorithm has completed, any adjacent fragments that now has master
replicas on the same site are coalesced (denoted coalesceLocalFragments() in the
algorithm). This helps keeping the number of fragments low. If two fragments are
coalesced, the read replicas of those fragments must be updated as well. Some sites
will likely have read replicas of only one of the fragments. These sites must either
delete their replicas or get a replica of the fragment they are missing so coalescing
can be performed on all replicas. Our heuristic is that we send the fragment which
requires least communication cost to the sites missing that fragment. The remaining
sites delete their local replicas.

Finally, old access. statistics are removed from any remaining local master replicas
using function histogramReorganize, as described in Sect. 5.2.4.

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 175

6.4 Cost functions

The core of the algorithms are the cost functions. The functions estimate the com-
munication cost difference (or utility) between taking a given action (create, delete,
split) and keeping the status quo. The basic assumption is that future accesses will
resemble recent history as recorded in the access statistics histograms.

From Sect. 3.3 the communication cost Cir = Y ; C(A;) + Z.,' C(REj).
Accesses can either be reads, writes or updates: Y, C(A;) = Y , C(ARy) +
Zl C(AW)) + >_,, C(AU,,). The recent history for fragment F consists of a series
of accesses SA =[A1,..., A,]. Each access A; comes from a site S,. The accesses
from a given site S, is SA(S,) where SA(S,) C SA. Since we measure communica-
tion cost, local accesses have no cost, i.e., VA;, A; € SA(S;) = C(A;) =0.

The basic form of the cost functions is as follow:

utility = benefit — cost D

Replica creation: The benefit of creating a new read replica on site S, is that reads
from site S, will become local operations and thus have no network communication
cost. The cost of creating a new replica is first that the new replica will have to be
updated whenever the master replica is written to. The second part of the cost is the
actual transfer of the replica to the new site. This gives the following utility function:

utilityCreate = card(SR(S,)) — card(SU) — card(F) 2)

where card(SR(S,)) is the number of reads from remote site S,, card(SU) is the
number of replica updates and card(F) is the size of the fragment.

Replica deletion: When a read replica R at site S; is deleted, the benefit is that
replica updates will no longer have to be transmitted to S;. The cost is that local reads
from S; to R will now become remote. Thus we get the following utility function:

utilityDelete = card(SU) — card(SR(S))) 3)

Splitting fragments and migrating master replicas: As described earlier, the algo-
rithm handles splitting by using the cost function on all possible value ranges for the
fragment. Thus the aim of the cost function is limited to estimating when a master
replica R should be migrated from S; to a remote site S,. The only way a migration of
the master replica can affect the number of remote reads and updates in the system, is
if S, already has a read replica. However, since S; does not know the usage statistics
of any possible replica at S,, we simplify the function by omitting this possibility.
The benefit of a migration of the master replica to S, is therefore that writes from S,
will become local operations. Similarly, the cost will be writes from S;. In addition
we must consider the cost of migrating in itself. Our utility function:

utilityMigrate = card(SW (S;)) — card(SW(S;)) — card(F) 4)

Cost function.weights: While these equations are expressions of possible commu-
nication cost savings from different actions, they cannot be used quite as they are in

@ Springer

176 Distrib Parallel Databases (2010) 28: 157-185

an actual implementation. There are a couple of issues. First, SW, SR and SU by de-
sign include only the recent history and cardinality values are therefore dependent on
how much history we include. On the other hand, card(F) is simply the current num-
ber of tuples in the fragment and thus independent on history size. We therefore scale
card(F) by a cost function weight wrs. This weight will have to be experimentally
determined and optimal value will depend on how much the usage history includes.

The second problem is stability. If we allow, e.g., migration when the number of
remote accesses is just a few more than the number of local accesses, we could get
an unstable situation where a fragment is migrated back and forth between sites. This
is something we want to prevent as migrations cause delays in table accesses and
indices may have to be recreated every time. To alleviate this problem, we scale the
benefit part of the cost functions by wpgg € [0..1]. For migrations, wpg = 0.5 means
that there will have to be 50% more remote accesses than local accesses for migration
to be considered, i.e., for the utility to be positive (disregarding fragment size).

By including wrs and wpg we get the following cost functions:

utilityCreate = wpg - card(SR(S;)) — card(SU) — wrs - card(F) (®))

utilityDelete = wpg - card(SU) — card(SR(S;)) (6)
utilityMigrate = wgg - card(SW (S;)) — card(SW (S;))
— wgs - card(F) @)

Different values for the two cost function weights are evaluated experimentally in
the Evaluation Section below.

7 Evaluation

In this section we present an evaluation of our approach. We aim to investigate dif-
ferent dynamic workloads and the communication cost savings our algorithms can
achieve. Ideally, we would have liked to do a comparative evaluation with related
work. However, to the best of our knowledge, no previous work exists that do contin-
uous dynamic refragmentation and replication based on reads and writes in a distrib-
uted setting. Instead, we compare our results with a no-fragmentation and an optimal
fragmentation method (where applicable).

The evaluation has three parts. First we examine the results from running a simu-
lator on four workloads involving just two sites. These workloads have been designed
to highlight different aspects, such as fragmentation, replication and changing access
patterns. We have kept them as simple as possible to make it easier to analyze the re-
sults qualitatively. For the second part of the evaluation, we do simulations using two
highly dynamic workloads involving more sites, providing a more realistic setting.
The third part consists of experiments on an implementation in a distributed database
system.

7.1 Experimental setup

For_the evaluation,.we. implemented.a simulator which allows us to generate dis-
tributed workloads, i.e., simulate several sites all performing tuple reads and writes

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 177

with separate access patterns. In all presented simulation results, the fragmentation
and replication decision algorithms were run every 30 seconds. All simulations have
been run 100 times, and we present the average values. For each simulated site, the
following parameters can be adjusted:

— Fragmentation attribute value interval: minimum and maximum values for the ac-
cesses from the site.

— Access distribution: either uniform or hot spot (10% of the values get 90% of the
accesses).

— Average rate of tuple accesses in number of accesses per minute. We use a Poisson
distribution to generate accesses according to the frequency rate.

— Access type: reads, writes or a combination of both.

Values for these parameters need not be constant, but can change at any point for any
site in the workload. In our simulations, we have used maximum histogram size of
MAX p = 100 buckets, and each table has one fragment with no read replicas when
a simulation starts. We also tested with 1000 buckets, but this provided negligible
benefits for our workloads.

Unlike most of the relevant previous work, our method tightly integrates fragmen-
tation allocation and replication. Therefore, it does not make much sense comparing
against techniques that only perform one of the tasks. Instead, we use the following
two fragmentations methods to act as baselines for comparison. The first is a baseline
where the table is not fragmented or replicated at all. The table consists of a single
fragment with its master replica permanently allocated to the site with the largest total
number of accesses. This is what would happen in a database system that does not use
fragmentation or replication (e.g., to simplify implementation and configuration), at
least given that workloads were completely predictable. Since there is no replication,
there are no communication costs from migrations either.

The second allocation method we compare against, is optimal fragmentation. Here
we assume full knowledge about future accesses. Each table is (at runtime) frag-
mented and the fragments are migrated and/or replicated to the sites which would
minimize remote accesses.

It should be noted that both these fragment allocation alternatives assume advance
knowledge about the fragmentation attribute value interval, distribution, frequency
and type of accesses, none of which are required for our dynamic approach.

7.2 Workloads involving two sites

In this section, we present results from four workloads, each with two sites (S, S2).
These two sites accessed 25000-50000 tuples each. Early testing showed that 25000
tuples was more than enough to reach a stable situation. Only two sites were used for
these workloads in order to make it easier to analyze the results. Each workload was
therefore designed with a specific purpose in mind.

The fragmentation attribute value intervals for the two sites were designed so that
they overlapped completely. Two rates were used, a high rate of 6000 accesses per
minute and.a low.rate of 3000.accesses.per minute. For workload 1 and 3, the work-
load was constant for both sites, while 2 and 4 switched workload parameters halfway

@ Springer

178 Distrib Parallel Databases (2010) 28: 157-185

Table 4 Two-site workloads

Workload no. Access Distribution Rate Purpose

1 Write S1:Uniform, S>:Hot spot Low Detect hot spots

2, first half Write S1:Hot spot, Sp:Uniform Low Detect distribution
change

2, second half Write S1:Uniform, S>:Hot spot Low

3 S1:Read, S>:Write Uniform S1:High, S>:Low Make read replica

4, first half S1:Read, Sp:Write Uniform S1:High, Sp:Low Change replica
pattern

4, second half S7:Write, S:Read Uniform S1:Low, S>:High

through. Workloads 2 and 4 serve as examples of dynamic workloads where access
patterns are not constant and predictable. The results from these workloads should
illustrate if our approach’s ability to adjust fragmentation and replication at runtime
result in communication cost savings. The four workloads are detailed in Table 4.

Workload 1: In this workload, one of the sites has 10 hot spots while the other
has uniform access distribution. Ideally, these 10 hot spots should be detected and
migrated while the remainder should be left on the uniform access site. This case is
similar to the one presented in Fig. 1. Figure 4(a) shows results for workload 1 with
different values for wpg and wrs. Communication costs for no-fragmentation and
optimal fragmentation are also shown.

For this workload, the majority of the communication cost comes from remote
writes, i.e. when the extract+migrate algorithm is very conservative on migrating the
hotspots from 7 to S». High values of wgs cause the algorithm to overestimate the
cost of migration while low values of wpg cause the benefit to be undervalued. This
combination thus almost reduces to the no-fragmentation case. For lower values of
wrs and higher values of wpgg, refragmentation decisions are made earlier and the
result is comparable to optimal fragmentation.

Workload 2: This is a dynamic version of workload 1, with the two sites switching
access patterns halfway through. The simulation results for this workload are shown
in Fig. 4(b).

Results here are similar to workload 1, but with an extra overhead from detecting
the access pattern change. This overhead is larger than for workload 1 simply because
at the time the workload changes, the recent history is filled with the old workload and
it takes a while for the new workload to dominate. The worst result is again similar
to no-fragmentation.

Workload 3: This workload has one site writing while the other site reads at twice
the rate. Ideally the site that writes should get the master replica, while the other site
gets a read replica. Results from workload 3 are shown in Fig. 4(c).

The most important factor for the communication cost of this workload is whether
a read replica is created on S;. For low values of wpg, the benefit of such a replica
is undervalued and it is never created leading to poor results. Changes in wrg only
delay replica creation slightly and therefore has comparatively little influence. The
exception.is-where high wgg-and low.wpgg together prevent any migrations from hap-
pening, giving similar results to no-fragmentation. No-fragmentation does quite well

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 179

‘@ 25000 ‘@ 250004
: Wpg=0.25 —+— a %, Wwps=0.25 ——
2 Wrs=0.50 -5] Wg=0.50 -
+— 20000} Wps=0.75 - = 20000 f Wps=0.75 -
3 wrs=1.00-8] Wpg=1.00 8
g NoFrag -4~ g NoFrag -~~~
© 15000 Optimal ---o-- © 15000 - Optimal -----
8 8 Ry
c C
S 10000 - S 10000 -
£ £
£ g o €
o o
O 5000 ; c : : : : ° ° O 5000 ; c : : ; ; : :

0.1 02 0.3 04 05 06 0.7 0.8 09 1 0.1 02 0.3 04 05 06 0.7 0.8 09 1

WBE WBE
(a) Two-site workload 1. (b) Two-site workload 2.

= 55000 - - - = 55000
9 Wps=0.25 —— 9
S 50000 Wpeg=0.50 | S 50000
S, T Wpg=0.75 % E’
@ 45000 Wpg=1.00 8 B 45000
o NoFrag —-&-- o)
S 40000 Optimal ---o--- S 40000} . wps=0.25 —— |
= = g Wpg=0.50 -
£ 35000 £ 35000 wps=0.75 x
=] =] wps=1.00 8
E 30000% £ 30000 NoFrag -~ -
S X S Optimal ---o---
© 25000 4 A4 4 4 ? L4 4 hd O 25000 2 12 ? s s 2 @ Q

0.1 02 03 04 05 06 0.7 0.8 09 1 0.1 02 03 04 05 06 0.7 0.8 09 1

WBE WBE
(c) Two-site workload 3. (d) Two-site workload 4.

Fig. 4 (a) Results from two-site workload 1. (b) Results from two-site workload 2. (¢) Results from
two-site workload 3. Note that NoFrag and Optimal are equal for this workload, at 25000 tuples. (d) Results
from two-site workload 4

here as it allocates the fragment to the site with the highest number of accesses which
is also the optimal solution.

Workload 4: Similar to workload 3, except the two sites change behavior halfway
through the workload. What we would like to see is a deletion of the read replica, mi-
gration of the master replica and a subsequent creation of a new read replica. Results
from workload 4 are shown in Fig. 4(d).

The results are somewhat similar to workload 3. The largest difference is the over-
head from detecting the workload change (similar to that of workload 2). For low
values of wpg, remote reads are the dominant cost since no replica is created. For
higher values, a replica is created and remote updates dominates. No-fragmentation
is now much worse since it does not adjust to the change.

Detailed results for all four workloads with wgg = 0.9, wgrs = 0.50 are shown in
Table 5. This table lists the number of remote accesses, migrations, fragments at the
end of the run and the number of tuples transferred during migrations. The com-
munication cost is the sum of remote accesses and tuples transferred. The final two
columns shows the communication cost from the no-fragmentation and optimal allo-
cation methods. Average results for the four workloads using the same cost function
weight values are shown in Fig. 5.

@ Springer

180 Distrib Parallel Databases (2010) 28: 157-185

Table 5 Detailed results, wpg = 0.9, wrg = 0.50

Workload Re. Re. Re. Migrations Fragments Tuples Comm. No frag. Optimal
no. writes reads updates cost
1 6229 0 0 10 20 46 6275 25000 5000
2 11145 0 0 53 47 860 12005 25000 5000
3 984 3154 22476 2 1 1385 27999 25000 25000
4 4009 6374 30310 44 21 3173 43866 50000 25000
Fig. 5 Comparative results 50000
from two-site workloads R

S 40000

7

8 30000

C

o

S 20000

o

3

E 10000

o

(&

No frag. Dynamic Optimal

7.3 Workloads involving several sites

This section presents the results from two workloads involving 20 active sites each
(i.e., the actual system can consist of a much larger number of sites, however only 20
sites simultaneously access the actual table during the simulation). The first of these
workloads is intended to resemble a distributed application which have separate read
and write phases, e.g., a grid application.

We have modeled the read phase as follows: A site uniformly accesses an ran-
dom interval that constitutes 10% of the table. Between 30,000 and 60,000 reads are
performed at an access rate of 2000 to 4000 reads a minute. Values for the interval,
number of reads and rate are drawn randomly at the start of each phase.

After the read phase has completed, a write phase follows. Here the site accesses
uniformly accesses a random interval 1% of the size of the table. Anywhere from
20,000 to 40,000 tuples are written at a rate of 2000 writes a minute. After the write
phase has completed, a new read phase is initiated (and so on) until the site has
accessed 500,000 tuples. With 20 sites, this gives a complete workload consisting of
10 million accesses. Also note that due to the random parameters, two different sites
will generally not be in the same phase.

Comparative evaluation is more difficult for this workload than for those previ-
ously presented. The no-fragmentation method is still usable, but less realistic as the
fixed non-fragmented master replica easily can become a bottleneck for remote writes
and updates. The optimal fragmentation method is more problematic. With 10 million
accesses each run and no clear access pattern, a very large number of fragmentations,
migrations.and. replica_allocations.would_have to be evaluated to find the optimal
dynamic solution. Further, the highly random nature of this workload means that a

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 181

12 T v T 12 T - T
WI"S:0'25 — WFS:O-ZS —

111 Wpg=0.50 -3 1110 Wps=0.50 —%—
Wwpg=0.75 % Wwrg=0.75 %
wpg=1.00 & wpg=1.00 8

107 NoFrag --4-- 10 NoFrag --&--

Communication cost (tuples)/Millions
©

Communication cost (tuples)/Millions
©

7+ 7+
Bl) S e
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 0.7 08 09 1
WBE WBE
(a) Grid application workload. (b) General workload

Fig. 6 (a) Results from grid application workload. (b) Results from general workload

fragmentation and replica allocation that are optimal for one run, will not be optimal
for another. The optimal fragmentation method would therefore have to be recom-
puted for each run. For these reasons we found optimal fragmentation infeasible and
omitted it from this part of the evaluation.

The results are shown in Fig. 6(a). With ten times as many sites as for earlier
workloads, having too many replicas becomes a much more important issue due to
the number of update messages needed to keep all the replicas consistent. This is
what causes very poor results with a combination of low wpg and low wgs. The low
wrs underestimates the cost of creating a read replica while low wpg makes it hard
to delete it later. This leads to an excessive number of replicas and poor performance
from the high number of updates needed. Due to the highly dynamic nature of this
workload, high values of wpg work well as they make the algorithms take action
earlier. Since the number of writes is low and confined to narrow intervals of the
table, fragment sizes stay small and thus the wgg value is of little importance.

The second multi-site workload is intended to resemble a more general usage pat-
tern where each site does not have distinct read and write phases, but rather a single
phase that includes both. We have modeled it as follows: A site uniformly accesses
a random interval that constitutes 10% of the table. Each of these accesses can be
either a read (80%) or a write (20%). The access rate is from 2000 to 4000 accesses a
minute, and the phase lasts between 30,000 and 60,000 accesses. After the phase has
completed, it restarts with new sets of parameters randomly drawn. As for the last
workload, this continues until 500,000 accesses have been made from each site. The
simulation results are shown in Fig. 6(b).

Similar to the grid application workload, the creation and deletion of read replicas
are the most important factors influencing the results. Low values of wpg make the
algorithms act conservatively, both when creating and deleting replicas. This leads
to remote reads dominating the communication cost. For higher values of wpg, more
replicas are created giving fewer remote reads but more updates. For this workload,
these two factors tended to balance each other out, giving similar communication
costs for a wide selection of cost function weight values. While there are separate
write phases.in the grid application. workload that each only accessed 1% of the table,
writes in this workload were interleaved with reads and accessed a much larger part

@ Springer

182 Distrib Parallel Databases (2010) 28: 157-185

17} 17

S 60 8 60

c [

2 k]

8 50 8 50

5 5

E 40 E 4w

o o

o (8]

£ 30 £ 30

c c

S S

S 20 S 20

B K]

g 10 g 10

S 8

=4 c

g o g o

S General Grid app. k3 General Grid app.

(a) Multi-site workloads in simulations. (b) Multi-site workloads in DASCOSA-DB.

Fig.7 (a) Comparative results from simulations with multi-site workloads, showing reduction in commu-
nication cost relative to the no-fragmentation method. (b) Comparative results from multi-site workloads
using DYFRAM implemented in DASCOSA-DB, showing reduction in communication cost relative to the
no-fragmentation method

Table 6 Tuples transferred during multi-site workloads in simulations and implementation in DASCOSA-
DB

Simulation Implementation
Workload No frag. DYFRAM Reduction No frag. DYFRAM Reduction
General 9.5 mill. 6.85 mill. 27.9% 100,000 59519 40.5%
Grid app. 9.5 mill. 6.95 mill. 26.8% 100,000 47921 52.1%

of the table (for a given phase). This workload also had a smaller fraction of the
accesses as writes. These three factors caused the splitting algorithm to create smaller
fragments which meant that wrg had little impact on the results.

Comparative results for the two multi-site workloads using wpg = 0.9 and
wrs = 0.50, are shown in Fig. 7(a) and Table 6.

7.4 Implementation of DYFRAM in DASCOSA-DB

In this experiment, DYFRAM was implemented in the DASCOSA-DB distributed
database system [16] in order to verify simulation results. The workloads tested are
similar to the grid and general workloads presented in Sect. 7.3, but have been scaled
down a bit for practical reasons.

The grid workload has read phases of 6,000—12,000 accesses. Each phase uni-
formly accesses a random 5% interval of the table. Write phases do 4,000-8,000
writes to a random 0.5% interval of the table. There is no delay between accesses. As
soon as a site finishes one phase, it starts on the next, alternating between read and
write phases. The experiments are done with 6 sites, each issuing 20,000 accesses,
i.e., a total of 120,000 accesses. Half of the sites start in a read phase, while the other
half starts in a write phase. Due to the different phase lengths, this pattern will change
several times during the experiment.

The general workload.is.scaled with the same factors, giving phases of 6,000—
12,000 accesses to 5% of the table. 80% of these are read accesses and 20% are write

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 183

accesses. Each of the 6 sites issues 20,000 accesses, resulting in a total of 120,000
accesses.

The refragmentation algorithm is run every 30 seconds with wrs = 0.2 and
wpe = 0.95, which should give a quite aggressive use of refragmentation and replica-
tion. As explained in Sect. 6.4, the weights were found experimentally by testing on
a shorter workload, consisting only of a few thousand accesses. The results are com-
pared against the no-fragmentation method. Each experiment is repeated a number of
times with different random seeds.

The results from both workloads and the no-fragmentation method are shown in
Fig. 7(b) and Table 6. We see that the results are similar to those from the simula-
tions. For the general workload, communication costs are reduced by more than 40%
compared to the no-fragmentation method. The costs of the grid workload is reduced
by more than 50%. Clearly, the cost of replication is made up for by converting re-
mote accesses to local accesses. Around 20% of the tuples transferred are caused by
fragments moving around. The ratio of read vs. write accesses varies more, with the
grid workload generally having higher write costs and the general workload having
higher read costs.

The results do not vary much between each run, and small changes in wrs and wgg
do not change the results much. The length of each phase will affect the cost savings,
but even if phases are only half as long, communication costs are 25% below the
no-fragmentation method.

8 Conclusions and further work

In distributed database systems, tables are frequently fragmented and replicated over
a number of sites in order to reduce network communication costs. How to fragment,
when to replicate and how to allocate the fragments to the sites are challenging prob-
lems that has previously been solved either by static fragmentation and allocation,
or based on the analysis of a priori known queries. In this paper we have presented
DYFRAM, a decentralized approach for dynamic table fragmentation and allocation
in distributed database systems, based on observation of the access patterns of sites to
tables. To the best of our knowledge, no previous work exists that perform the com-
bination of continuous refragmentation, reallocation, and replication in a distributed
setting.

Results from simulations show that for typical workloads, our dynamic fragmenta-
tion approach significantly reduces communication costs. The approach also demon-
strates well its ability to adapt to workload changes. In addition to simulations, we
have also implemented DYFRAM in the DASCOSA-DB distributed database system,
and demonstrated its applicability in real applications.

Future work include exploring adaptive adjustment of the cost function weights as
well as better workload prediction based on control theoretical techniques. We also
intend to develop a variant of our approach that can be used in combination with
static query analysis in order to detect periodically recurring access patterns.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-

mercial icenserwhichrpermitsrany noncommercialiuse, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

@ Springer

184 Distrib Parallel Databases (2010) 28: 157-185

References

1. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partitioning into automated
physical database design. In: Proceedings of SIGMOD, 2004
2. Agrawal, S., Chu, E., Narasayya, V.R.: Automatic physical design tuning: workload as a sequence.
In: Proceedings of SIGMOD 2006, 2006
3. Ahmad, L, et al.: Evolutionary algorithms for allocating data in distributed database systems. Distrib.
Parallel Databases 11(1), 5-32 (2002)
4. Apers, PM.G.: Data allocation in distributed database systems. ACM Trans. Database Syst. 13(3),
263-304 (1988)
5. Bonvin, N., Papaioannou, T.G., Aberer, K.: A self-organized, fault-tolerant and scalable replication
scheme for cloud storage. In: Proceedings of SoCC 10, 2010
6. Bruno, N., Chaudhuri, S.: An online approach to physical design tuning. In: Proceedings of ICDE,
2007
7. Brunstrom, A., Leutenegger, S.T., Simha, R.: Experimental evaluation of dynamic data allocation
strategies in a distributed database with changing workloads. In: Proceedings of CIKM ’95, 1995
8. Ciciani, B., Dias, D., Yu, P.: Analysis of replication in distributed database systems. IEEE Trans.
Knowl. Data Eng. 2(2), 247-261 (1990)
9. Copeland, G., et al.: Data placement in Bubba. In: Proceedings of SIGMOD 1988, 1988
10. Corcoran, A.L., Hale, J.: A genetic algorithm for fragment allocation in a distributed database system.
In: Proceedings of SAC 94, 1994
11. Didriksen, T., Galindo-Legaria, C.A., Dahle, E.: Database de-centralization—a practical approach. In:
Proceedings of VLDB 1995, 1995
12. Donjerkovic, D., Toannidis, Y.E., Ramakrishnan, R.: Dynamic histograms: Capturing evolving data
sets. In: Proceedings of ICDE, 2000
13. Furtado, P.: Experimental evidence on partitioning in parallel data warehouses. In: Proceedings of
DOLAP 2004, 2004
14. Gavish, B., Sheng, O.R.L.: Dynamic file migration in distributed computer systems. Commun. ACM
33(2), 177-189 (1990)
15. Hara, T., Madria, S.K.: Data replication for improving data accessibility in ad hoc networks. IEEE
Trans. Mob. Comput. 5(11), 1515-1532 (2006)
16. Hauglid, J.O., Ngrvag, K., Ryeng, N.H.: Efficient and robust database support for data-intensive ap-
plications in dynamic environments. In: Proceedings of ICDE, 2009
17. Hua, K.A,, Lee, C.: An adaptive data placement scheme for parallel database computer systems. In:
Proceedings of VLDB 1990, 1990
18. Ioannidis, Y.: The history of histograms (abridged). In: Proceedings of VLDB 2003, 2003
19. Ivanova, M., Kersten, M.L., Nes, N.: Adaptive segmentation for scientific databases. In: Proceedings
of ICDE 2008, 2008
20. Menon, S.: Allocating fragments in distributed databases. IEEE Trans. Parallel Distrib. Syst. 16(7),
577-585 (2005)
21. Mondal, A., Madria, S.K., Kitsuregawa, M.: CADRE: A collaborative replica allocation and deallo-
cation approach for mobile-p2p networks. In: Proceedings of IDEAS 2006, 2006
22. Mondal, A., Yadav, K., Madria, S.K.: EcoBroker: An economic incentive-based brokerage model for
efficiently handling multiple-item queries to improve data availability via replication in mobile-p2p
networks. In: Proceedings of DNIS 2010, 2010
23. Padmanabhan, P., Gruenwald, L., Vallur, A., Atiquzzaman, M.: A survey of data replication techniques
for mobile ad hoc network databases. VLDB J. 17(5), 1143-1164 (2008)
24. Rao, J., et al.: Automating physical database design in a parallel database. In: Proceedings of SIG-
MOD 2002, 2002
25. Sacca, D., Wiederhold, G.: Database partitioning in a cluster of processors. ACM Trans. Database
Syst. 10(1), 29-56 (1985)
26. Shin, D.-G., Irani, K.B.: Fragmenting relations horizontally using a knowledge-based approach. IEEE
Trans. Softw. Eng. 17(9), 872-883 (1991)
27. Sidell, J., Aoki, PM., Sah, A., Staelin, C., Stonebraker, M., Yu, A.: Data replication in Mariposa. In:
Proceedings of ICDE 1996, 1996
28. Stonebraker, M., et al.: Mariposa: A wide-area distributed database system. VLDB J. 5(1), 48-63
(1996)
29y TamhankaryAvy Ramy St Databasefragmentation and allocation: an integrated methodology and case
study. IEEE Trans. Syst. Man Cybern., Part A 28(3), 288-305 (1998)

@ Springer

Distrib Parallel Databases (2010) 28: 157-185 185

30. Ulus, T., Uysal, M.: Heuristic approach to dynamic data allocation in distributed database systems.

31.

32.

33.
34.

Pak. J. Inf. Technol. 2(3), 231-239 (2003)

Weikum, G., et al.: The COMFORT automatic tuning project, invited project review. Inf. Syst. 19(5),
381-432 (1994)

Wolfson, O., Jajodia, S.: Distributed algorithms for dynamic replication of data. In: Proceedings of
PODS’92, New York, NY, USA, 1992. ACM, New York (1992)

Wong, E., Katz, R.H.: Distributing a database for parallelism. SIGMOD Rec. 13(4), 23-29 (1983)
Zilio, D.C., et al.: DB2 design advisor: integrated automatic physical database design. In: Proceedings
of VLDB 2004, 2004

@ Springer

	DYFRAM: dynamic fragmentation and replica management in distributed database systems
	Abstract
	Introduction
	Related work
	Preliminaries
	System model
	Fragment model
	Problem definition

	Overview of DYFRAM
	Replica access statistics
	Histogram design
	Histogram operations
	Histogram update
	Histogram bucket resizing
	Histogram range count
	Histogram reorganization

	Histogram memory requirements

	Fragmentation and replication
	Creating replicas
	Deleting replicas
	Splitting fragments
	Cost functions

	Evaluation
	Experimental setup
	Workloads involving two sites
	Workloads involving several sites
	Implementation of DYFRAM in DASCOSA-DB

	Conclusions and further work
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

